

Radiation Biology

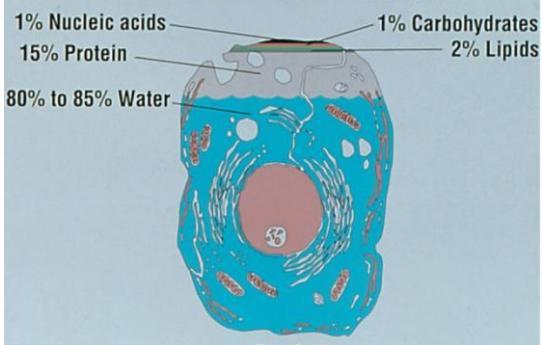
Physician Assistant
Fluoroscopy
Bushong, Chapter 29

© 2015 KPSAHS

Cell Chemical Composition

- Protoplasm
- Cytoplasm
- Inorganic compounds
- Organic compounds

© 2015 KPSAHS



PROTOPLASM COMPOSITION

(From Radiology and radiation protection: Mosby's radiographic instructional series. St Louis: 1999; Mosby.)

© 2015 KPSAHS

Cell Membrane

- Semipermeable structure
- Plays primary role in cell's transport system
 - Passive transport
 - Substance moves through cell membrane by osmosis
 - Active transport
 - Cell must expend energy to pump substances into and out of it

© 2015 KPSAHS

Cytoplasm

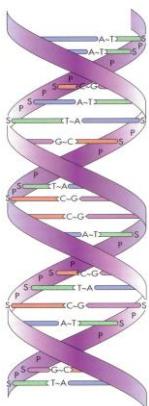
- Accepts unrefined materials for incorporation
- Breaks down materials to produce energy
- Packages substances for distribution
- Eliminates waste

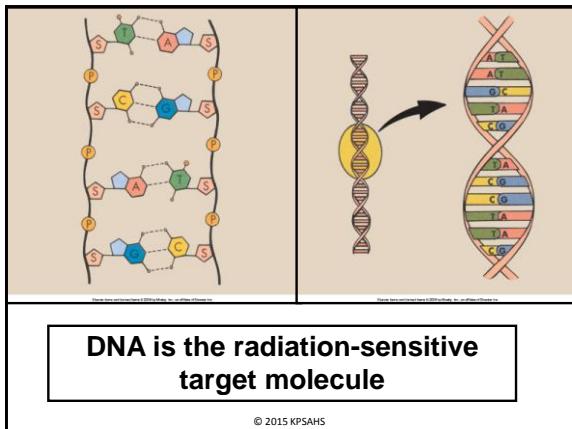
© 2015 KPSAHS

Nucleus

- Contained in the protoplasm
- Separated by a membrane (nuclear envelope)
- Contains DNA
- RNA is contained in the nucleolus
- Supervises and coordinates cytoplasmic activities

© 2015 KPSAHS





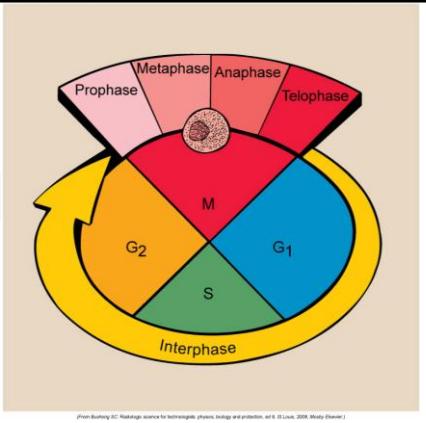
Organic Compounds

- Units of DNA:
 - Deoxyribose (sugar component)
 - Phosphate
- Adenine – Thymine
- Cytosine – Guanine
- These form the “rungs” in DNA

© 2015 KPSAHS

DNA is the radiation-sensitive target molecule

© 2015 KBSAHS


Chromosomes and Genes

Chromosomes

- Tiny rod-shaped bodies that under a microscope appear to be long threadlike structures that become visible only in dividing cells
- Composed of protein and DNA
- Normal human has 46 different chromosomes (23 pairs) in each somatic cell
- Reproductive cells (*germ cells*) have 23 chromosomes each

© 2015 KPSAHS

Mitosis

© John Wiley & Sons, Radiobiology for medical physics, biology and protection, 4th Ed. (R. Loeffer, 2009, Mitosis Chapter 1)

Interphase

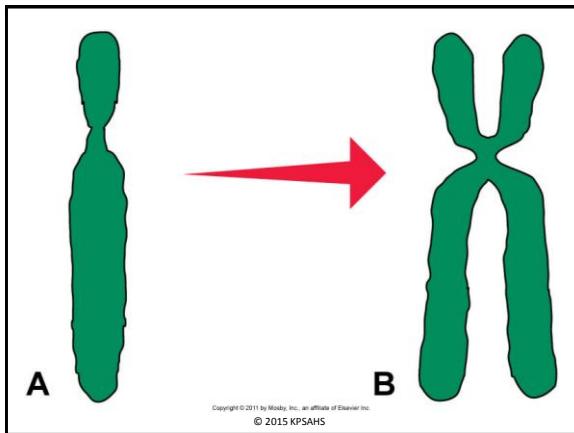
- Comprises about 90% of the cell cycle.
- Cellular growth:
Made up of three phases:
 1. G₁ phase
 2. S phase
 3. G₂ phase

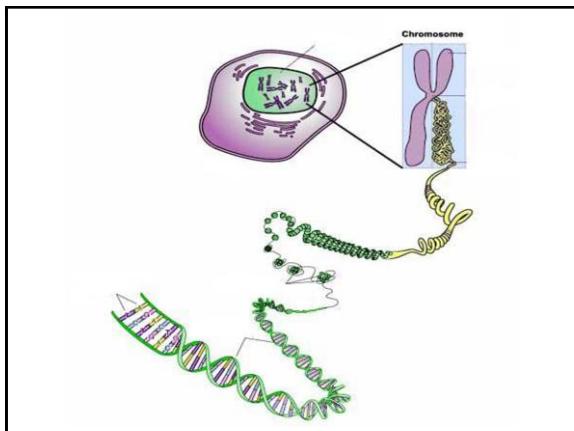
© 2015 KPSAHS

Interphase (cont)

- G₁ (gap) phase:
 - protein synthesis and metabolic activities
- S phase:
 - DNA replication takes place
- G₂ (gap) phase:
 - Cellular growth and preparation for mitosis phase

© 2015 KPSAHS



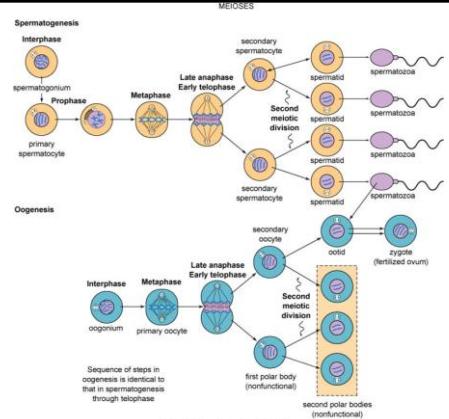


Mitotic Phase

Mitosis:

- Final phase of the cell cycle
- Nuclear division of genetic material
- Four sub-phases
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase

© 2015 KPSAHS



Meiosis

- Meiosis is similar to mitosis with some chromosomal differences
- There are two meiotic divisions compared a single mitotic division
- Because of the second meiotic division, the number of chromosomes are reduced in $\frac{1}{2}$ (23 instead of 46)
- Another important event during meiosis is crossover, where sister chromatids swap genes to increase the genetic diversity of the species

<http://www.youtube.com/watch?v=idQeKjEsj0U&feature=related>

© 2015 KPSAHS

Tissues and Organs

- Smallest unit
 - The cell
- Cells form tissues
- Tissues form organs
- Organs form systems

© 2015 KPSAHS

Tissues and Organs

- A system
 - May consist of one type of cell or many types of cells
 - Differing in size, shape and function
- **Radiosensitivity** is based on the most sensitive cell in the system

© 2015 KPSAHS

Cell Radiosensitivity

- High
 - Lymphocytes
 - Spermatogonia
 - Erythroblasts
 - Intestinal crypt cells
 - Endothelial cells
 - Osteoblasts
 - Spermatids
 - Fibroblasts
 - Muscle cells
 - Nerve cells
- Intermediate
- Low

© 2015 KPSAHS

Principles of Radiation Biology

Bushong, Chapter 30

© 2015 KPSAHS

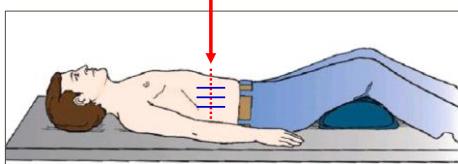
Law of Bergonié & Tribondeau

- Two French scientists
- Theory developed in 1906
- Radiosensitivity is a function of the metabolic state of the cell receiving the exposure

Tissues / cells having the most pronounced effects:

- **immature / unspecialized cells**
- **cells with long mitotic phases**
- **high rate of reproduction**

Radiation Energy Transfer Determinants


- Linear energy transfer (**LET**)
- Relative biologic effectiveness (**RBE**)
- Oxygen enhancement ratio (**OER**)

Characteristics of ionizing radiation such as charge, mass, and energy vary among the different types of radiation.

© 2015 KPSAHS

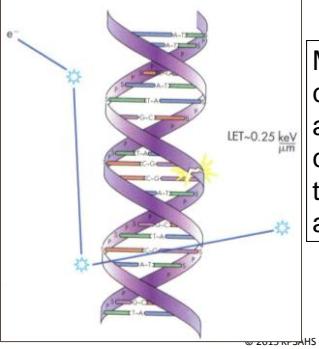
Linear Energy Transfer (LET)

- Average energy deposited per unit length of track or path (keV/ μ m)
- Radiation is divided into two categories:
 - Low LET
 - High LET

Low-LET Radiation

- X-rays and gamma rays
- Sparsely ionizing
- Interacts randomly
- Damage mostly through indirect action
 - Free radicals
- May cause damage through direct action
 - Single-strand breaks in DNA

© 2015 KPSAHS



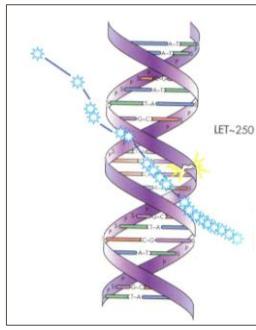
Low-LET Radiation

Most cell damage caused by indirect action, but damage can also occur through direct action.

High-LET Radiation

- Particles with substantial mass and charge
 - Alpha particles
- Dense ionization along their track
- Damage caused through direct action
 - Multiple-strand breaks in DNA
 - Complete chromosome breakage

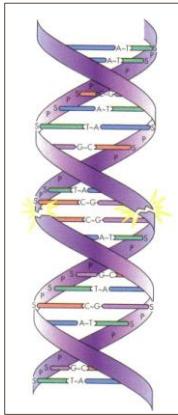
© 2015 KPSAHS



High-LET Radiation

Considered to cause a single strand or multiple strand break

© 2015 KPSAHS



Effect of High-LET Radiation

Considered a complete chromosomal break

© 2015 KPSAHS

Relative Biologic Effectiveness (RBE)

- Describes the ability of radiations with different LETs to produce a particular biologic reaction

$$RBE = \frac{\text{dose (Gy) of standard radiation to produce a given effect (200 - 250 kVp x-ray)}}{\text{dose (Gy) of test radiation}}$$

© 2015 KPSAHS

Fractionation / Protraction

- Methods of delivering a radiation dose over time
- Fractionation is the delivery of a certain dose using smaller portions
- Protraction is delivering a small dose continuously
- In either case, cells have an opportunity to repair and recover over time

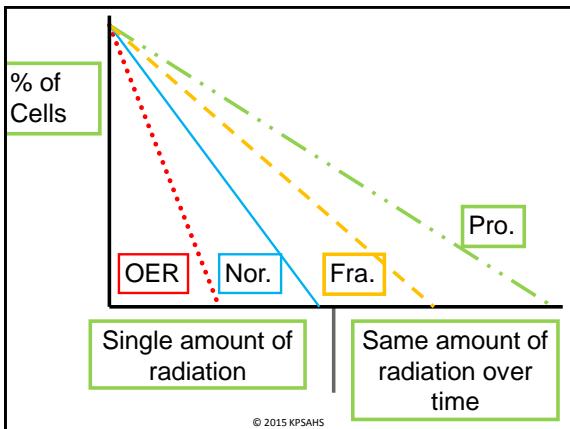
© 2015 KPSAHS

Oxygen Enhancement Ratio (OER)

- Also called the oxygen effect
- Cells are more radiosensitive in the presence of oxygen

$$OER = \frac{\text{Radiation dose required to cause biologic response without } O_2}{\text{Radiation dose required to cause biologic response with } O_2}$$

OER is highest with low LET radiation



Direct vs. Indirect Actions (Effects)

- Direct Action (Effect)
 - The initial ionizing event occurs on the target molecule
- Indirect Action (Effect)
 - Initial ionization occurs on a distant molecule
 - Energy of ionization is transferred to target molecule

© 2015 KPSAHS

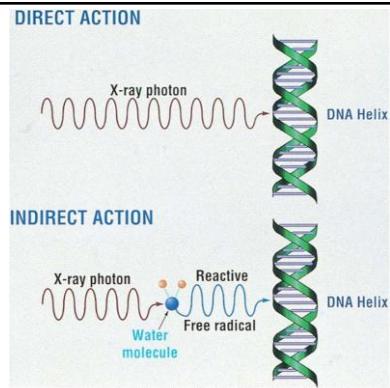
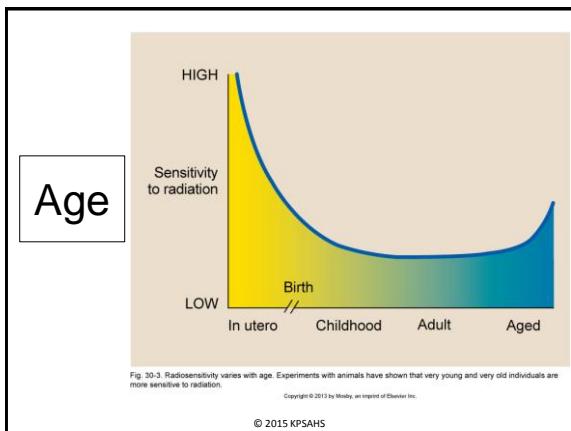



Fig. 6-3. The action of radiation on the cell can be direct or indirect. It is direct when ionizing particles interact with a vital biologic macromolecule such as DNA. The action is indirect when ionizing particles interact with a water molecule, resulting in the creation of ions and reactive free radicals that eventually produce toxic substances that can create biologic damage.

Other Factors Affecting Radiosensitivity

- Age
- Cell recovery
- Chemical agents

© 2015 KPSAHS

Recovery

Intracellular Repair + Repopulation

Results from sublethal damage

If the radiation dose is high enough, the tissue/organs atrophy

Apoptosis: cellular interphase death

- DNA is replicated during “S” phase
- If the cell dies before DNA replication, there is no recovery

Chemical Agents

Radiosensitizers:

- Make the cell more sensitive to the effects of radiation

Radioprotectors:

- Protect cells against radiation damage
 - Lethal to human cells

Radiation Dose-Response Relationships

Threshold:

- Point at which a response or reaction to an increasing stimulation first occurs
- Means that at below a certain radiation level or dose, biologic effects are not observed

© 2015 KPSAHS

Radiation Dose-Response Relationships

Nonthreshold:

- Any radiation dose will produce a biologic effect
- No radiation dose is believed to be absolutely safe

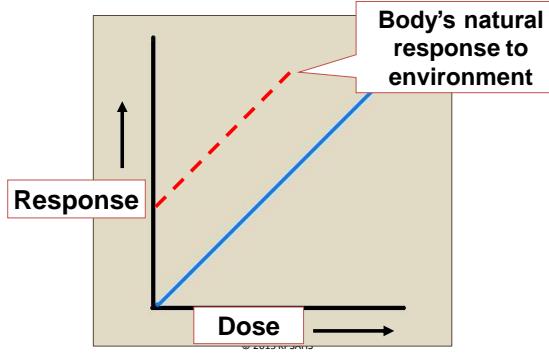
© 2015 KPSAHS

Linear, Nonthreshold

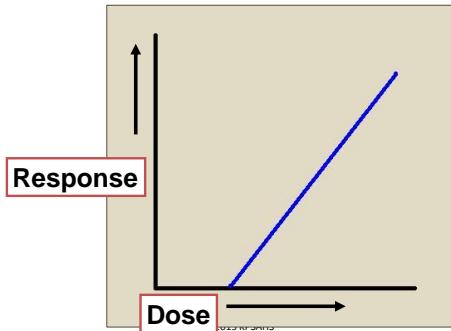
- No level of radiation can be considered completely safe
- A response occurs at every dose
- Response is directly proportional to the amount of radiation received
- Most types of cancer fall into this category

ALARA is based on this model

© 2015 KPSAHS



Linear, Nonthreshold



Linear, Threshold

- Lower doses of radiation result in no response
- When the threshold dose is exceeded, the response is proportional to the dose received

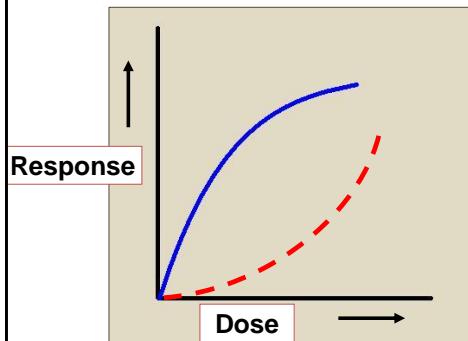
© 2015 KPSAHS

Linear, Threshold

Nonlinear, Nonthreshold

- No level of radiation is considered completely safe
- A response occurs at every dose
- The response is not proportional to the dose received
- The effect could be large even with a small increase in dose

© 2015 KPSAHS

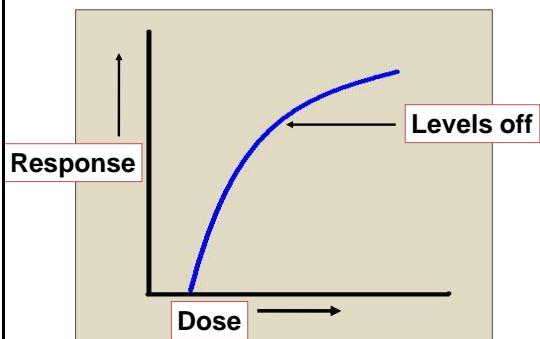


Nonlinear, Nonthreshold

Nonlinear, Threshold

- No response at lower dose
- Once the threshold is exceeded, the response is not proportional to the dose received and is increasingly effective per unit dose

© 2015 KPSAHS



Nonlinear, Threshold

Sigmoid “S-shaped”, Threshold Curve

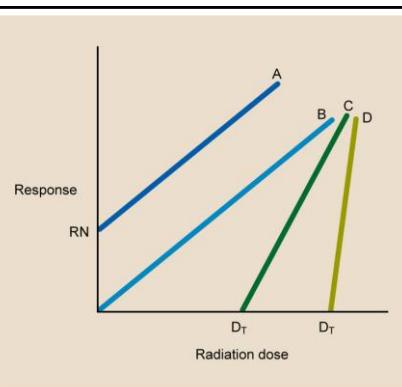
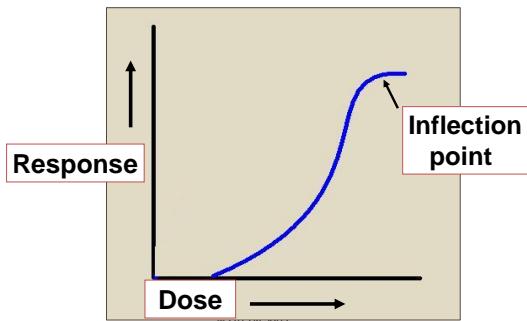



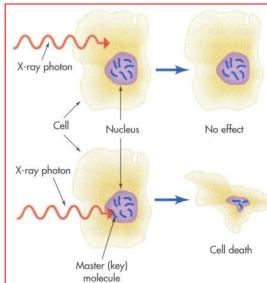
Fig. 30-4. Linear dose-response relationships A and B are nonthreshold types; C and D are threshold types. RN is the normal incidence or response with no radiation exposure.

Molecular / Cellular Radiobiology

Bushong, Chapters 31 & 32

© 2015 KPSAHS

Terminology

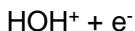

Ion: an atom (or group of atoms) which has acquired an electrical charge through the gain (or loss) of an electron (or electrons)

Free Radical: an uncharged molecule that contains a single unpaired electron in the outer shell

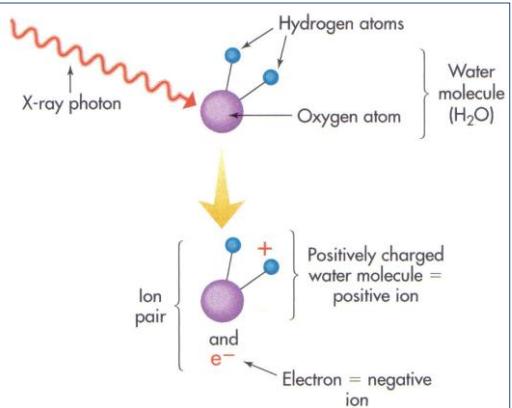
© 2015 KPSAHS

Target Theory

- The cell will die after exposure to ionizing radiation **only if** the master (or key) molecule (DNA) is inactivated in the process

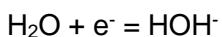


© 2015 KPSAHS

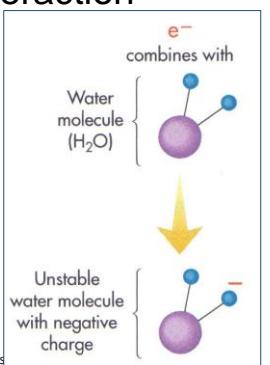

Indirect Interaction

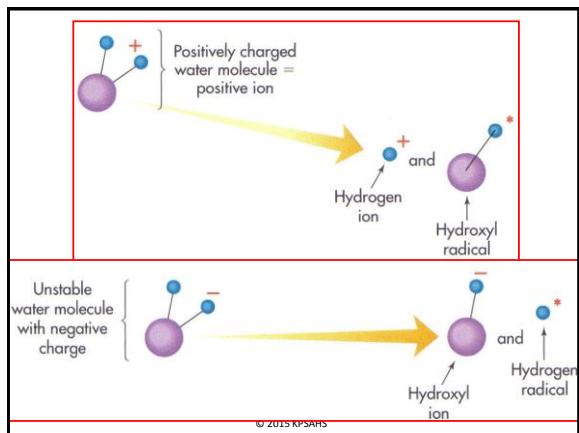
Radiolysis:

- An x-ray photon interacts with a water molecule (ejecting an electron) creating an ion pair (electrically charged particles)



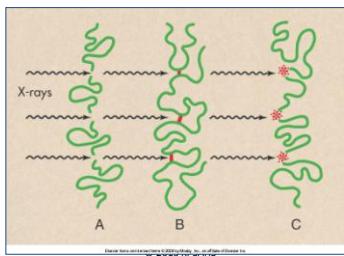
© 2015 KPSAHS




Indirect Interaction

- The electron may join with another water molecule, producing a negative water ion

© 2015 KPS


Indirect Interaction (cont)

- Hydrogen and hydroxyl free radicals can transfer their excess energy to other molecules causing the breakage of their chemical bonds, causing point lesions.
- Two hydroxyl radicals may bond creating hydrogen peroxide (H_2O_2)
- If a hydrogen free radical combines with molecular oxygen, a hydroperoxyl radical is formed.

© 2015 KPSAHS

Direct Interactions

DNA response to radiation: main-chain scission (A); cross-linking (B); and point lesions (C)

Main-Chain Lesions (scission)

Double strand break:

- One or more breaks in each of the sugar-phosphate chains (side rail severed)
- More difficult to repair
- If repair doesn't occur, there may be further separation of the DNA chain

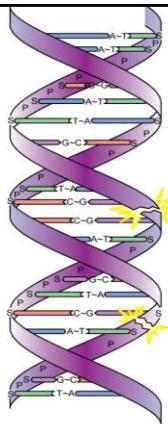
© 2015 KPSAHS

Main-Chain Lesions

Double strand break in same rung:

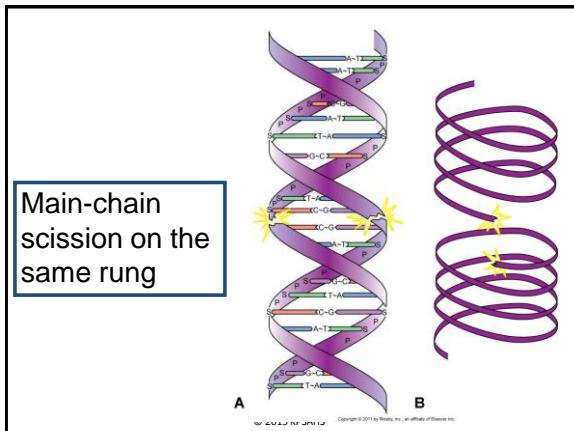
- Results in a broken chromosome
- The resulting daughter cells will have unequal amount of genetic material
- Results in cell death or impaired functioning

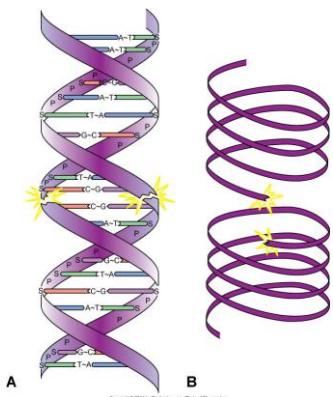
© 2015 KPSAHS



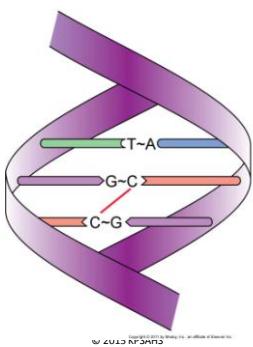
Double
Strand Break
(Scission)

© 2015 KPSAHS





Main-chain
scission on the
same rung

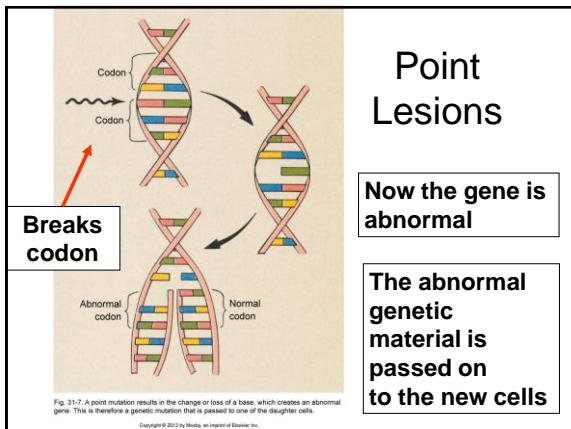

Covalent Cross-Links

Cross linking:

- Chemical unions created when atoms share one or more pairs of electrons
- Can occur between two places on the same DNA strand:
 - Intrastrand cross-link
- Can occur between two DNA molecules:
 - Interstrand cross-links

© 2015 KPSAHS

Covalent Cross-Links



Copyright © 2011 by Wiley, Inc., an affiliate of Blackwell Inc.

Point Lesions (Mutations)

- Radiation interactions can result in a disruption of single chemical bonds (point lesions or point mutations)
- Not detectable but can cause minor modification of the molecule which can cause malfunction within the cell

© 2015 KPSAHS

Point Lesions

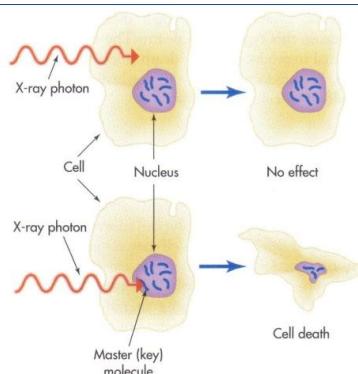
- No shape change of molecule
- No cytoplasmic changes
- Generally repairable
- **At low radiation doses, point lesions are considered to be cellular radiation damage resulting in late radiation effects observed at the whole-body level**

© 2015 KPSAHS

Mutation

- A change in the nitrogenous base will create an alteration in the genetic information that is passed on to future generations

© 2015 KPSAHS



Target Theory

© 2015 KPSAHS

Cell Survival Curves

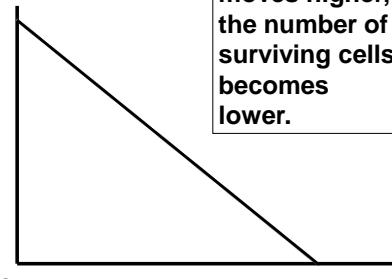
- The relationship between radiation exposure and proportion of cells that survive
- Cell kill is a random event
 - Some cells receive more than one hit
 - Some cells receive only one hit
 - Some cells will not be hit

© 2015 KPSAHS

Cell Survival Curves

- Cell death is exponential – *the same dose always kills the same proportion of cells* although absolute number of cell deaths varies
- Represents a logarithmic relationship between radiation dose and the proportion of cells that survive

© 2015 KPSAHS



Surviving Fraction

© 2015 KPSAHS

Target Theories & Cell Survival Curves

- The target theory states there are n targets in a cell that all must be “hit” in order to kill the cell
- If even one target is missed, the cell can survive and repair the damage

© 2015 KPSAHS

Target Theories & Cell Survival Curves

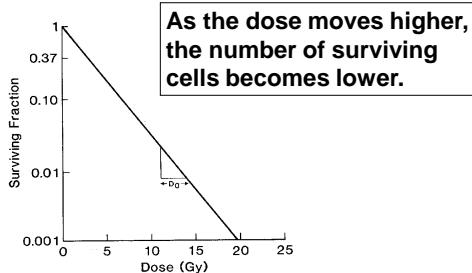
- There are areas on the DNA chain that, if damaged, can have an impact on the survival rate of cells
- So as the dose increases all cells reach a $n-1$ state where one more “hit” will kill the cell, this corresponds to the exponential portion (straight line) of the survival curve

© 2015 KPSAHS

Single Target / Single Hit Theory

- Some DNA sequences are so important to the cell that damage to any of these targets will kill the cell
- This type of cell is most sensitive to radiation
- Linear survival curve
- Applies to biologic targets, including simple cells

© 2015 KPSAHS



Example of Simple Survival Curve:

FIG 3-4.
Survival curve for bacteria (*Escherichia coli*), showing that in this system survival is a simple exponential function of dose.

© 2015 KPSAHS

Single Hit / Multiple Target

- Few mammalian cells show linear relationships between dose and cell survival
- Human cells have two of each chromosome, so it is believed that both of them must be damaged in order for the damage to kill the cell

© 2015 KPSAHS

Single Hit / Multiple Target

- Human cell survival curves have a “shoulder” at low doses which suggests single hit / multiple-target (two-chromosome) theory
- At higher doses, however, every chromosome would have hits, resulting in a linear curve

© 2015 KPSAHS

Cell Survival Curves

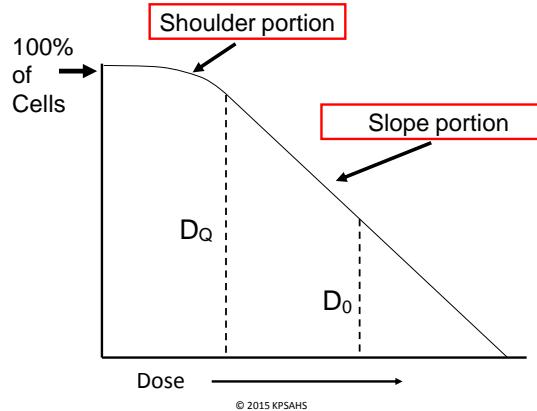
- Description of “shouldered” survival curves
- N - extrapolation number
 - Assumed to represent the number of targets in cell to cause cell death
 - Ranges from 2-10 for mammalian cells

© 2015 KPSAHS

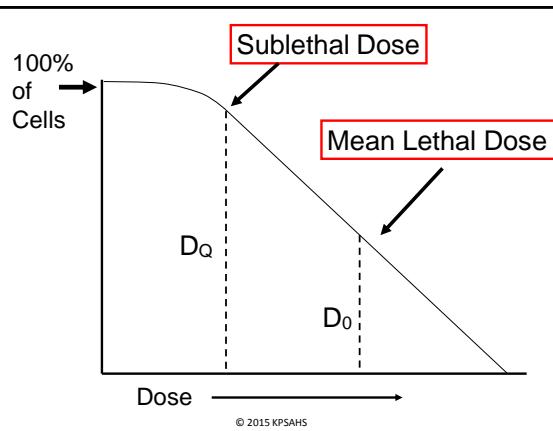
Cell Survival Curves

- D_Q - (threshold dose)
 - Width of the shoulder
 - Surviving fraction
- D_0 - (straight line portion of curve)
 - Defined as the dose that inactivates all but 37% of the population
 - Is an expression of radiosensitivity of a cell population

© 2015 KPSAHS



© 2015 KPSAHS



© 2015 KPSAHS

Cell Survival Curves

- Shallow curves are **less** sensitive
 - The longer the D_0 , the shallower the survival curve; the less sensitive the cell is to the radiation
- Steep curves are **more** sensitive
 - The shorter the D_0 , the steeper the survival curve; the more sensitive the cell is to radiation
- D_0 doses for mammalian cells vary between 1 – 2 Gy

© 2015 KPSAHS

Summary of Cell Response

- Some cells will receive no damage
- Some will accumulate enough damage to be lethal and will die in the next division
- Some cells will accumulate a degree of damage that is not lethal (sublethal) and which, given enough time, can be repaired (shoulder)

© 2015 KPSAHS

Survival Curves & Repair

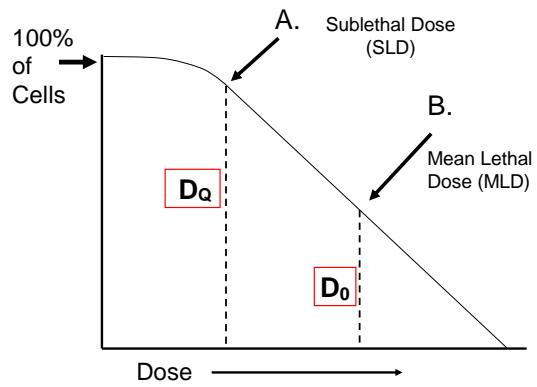
- If more damage is received before repair occurs, the two (damages) may interact to become lethal
- Exposure to low LET radiation allows repair
- Sublethal Damage (SLD)
 - Allows repair to occur between two doses of radiation separated by time
 - Most sublethal damage repair occurs in the 2 hours after exposure

© 2015 KPSAHS

Survival Curves & Repair (cont)

- Sublethal damage accounts for shouldered curves
- Cells and tissues with a broad shoulder on the curve exhibit a large amount of sublethal damage repair (i.e. jejunum)
- Cells and tissues with a narrow shoulder on the curve exhibit little to no sublethal damage repair (i.e. bone marrow)

© 2015 KPSAHS



© 2015 KPSAHS
